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The commutator relation between the Hartree-Fock matrix and the one-electron density matrix 
in Fukui's frontier molecular orbital model has been used to investigate the various kinds of ending of 
the customary iterative SCF procedure. Step by step description of the iterative SCF procedure has 
been given in an illustrative graphical way. There is a close connection among the symmetry nonadapted 
RHF solution for symmetrical molecules, the UHF solution for the closed shell molecules, the complex 
HF solution and the occurrence of oscillation for the iterative procedure. It has been explicitly shown 
that the nonconvergence of the usual iterative procedure occurs when the Coulombic interaction 
between not fully coupled spins of the molecular systems with a certain amount of diradical character is 
sufficiently weak. The results of the analysis concerning the properties of the Hartree-Fock approach 
are generalized for the asymmetrical molecules. 
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1. Introduction 

Besides the strange Har t ree-Fock  solut ions (symmetry non -adap t ed -RHF,  
U H F  and  complex solutions) discussed in details in the first con t r ibu t ion  of this 
series [-1], another  obvious  failure of the one-electron approx imat ion  is the non-  
convergence of the usual iterative procedure. In some cases even when the artificial 
recipes for enforcing the convergence work, the descript ion of the molecular  
properties based on the H F  solut ion can be doubtful.  It has been already demon-  
strated [2, 3] that the strange properties of the H F  approach like nonconvergence,  
often interpreted as consequences of the computa t iona l  difficulties, have on the 
contrary  physical reason. The connec t ion  between the convergence difficulties 
and  the strange H F  solut ions is evident  because of their frequent occurrence for 
the molecular  configurat ions characterized by the small energy gap between the 
highest occupied and  the lowest unoccupied  MO's .  

The aim of this paper  is to study this connect ion,  as well as the specific condi-  
t ions for the presence of various irregularities, when the cus tomary iterative 
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procedure is used. This should complete the attempt to characterize the degree 
of the opening of closed shell for the molecular configurations according to the 
occurrence of the HF strange properties. 

The detailed analysis of the customary iterative procedure [4] for solving 
the HF problem is carried out on the frontier orbital model (cf. [5]). This very 
simple model can reveal some important and general features which in more 
sophisticated models might not be realized due to the very complicated nature of 
the HF problem. The strange features of the SCF method, when met in the 
computational practice can be easily misinterpreted without such an analysis. The 
connection between the physical and mathematical side of the one-electron 
approach can also help to choose the appropriate method for treating the correla- 
tion effects in a way that the chemically interesting properties of unstable molecular 
systems can be qualitatively well described. 

2. Commutator of the Hartree-Fock Matrix and Bond Order Matrix in the 
Representation of the Equivalent Orbitals 

The solving of the HF eigenequations is exactly equivalent to finding the 
one-electron density matrix or the bond order matrix, which commutes with the 
HF matrix (compare Eqs. (A9) and (A 10), and for proof see Eqs. (A 1)-(A8) as 
well as Refs. [6-8]): 

[F~(pr,, pr~),/~r~] = 0 (1) 

where 2 = ~, fl labels spin. The matrices in Eq. (1) are in the representation of an 
orthonormal basis IQ). The Hartree-Fock matrix elements for the two-dimensional 
basis are given by Eqs. (A 13) and (A 14) and for the general case by Eq. (A 12) of 
Ref. [1]. The bond order matrix elements can be written: 

p/r~ = Z Cj, Ci~, 2 = ~, fl, (2) 
j~(~c| .wa) 

where ~c and ~,~ are doubly and singly - 2  occupied Fermi seas [compare 
Eq. (A 14) of Ref. Eli and Cjo are expansion coefficients from Eq. (A5)]. 

The nonlinear problem formulated by Eq. (1) is usually solved by the iterative 
SCF procedure [4], where the matrix elements of the HF operator P~[n] in the 
n-step of the procedure are built by bond order matrices from the I n -  1] st step 
Pr~[n- 1] and Pr~[n-  1] (cf. [33): 

[F~[n] (PT~[n- 1], Pm~[n- 13),/~rZ[n]] = 0. (3) 

Such a formulation of the iterative procedure has a closed and compact form, 
which makes it possible to analyse the convergence criteria of the iterative 
procedure as well as the influence of various constraints. The main emphasis 
of this study is put of course on the stopping of the iterative procedure, which 
occurs when the individual terms of the left hand side of Eq. (3) are not any more 
step-dependent. The stopping is not a sufficient condition for ending of the 
iterative process in the solution of the HF problem, which is equivalent to Eq. (1). 
Therefore, we study various kinds of terminating of the iterative procedure 
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which can be RHF,  UHF,  complex HF solutions or ending in oscillations wi thout  

convergence. 
We consider in the main part of the paper (with exception of Section 5) mole- 

cules with the symmetrical framework of nuclei, but without apriori assumption 
upon the symmetry properties of the electronic structure�9 The seemingly in- 
consequent assumption makes possible to follow the mechanism which gives 
rise to the ~'pathological" properties of the HF  iterative procedure. If for sym- 
metrical molecules the symmetry assumptions upon spin or space properties 
of the one-electron density are introduced in the zero-step, then of course, only 
rounding errors during the iterative procedure can give rise to these "pathological" 
properties. As emphasized in the Introduction, the motivation of this work is 
not in the investigation of the computational side of the problem but to characterize 
the molecular configurations by means of possible occurrence of the HF  strange 
properties. 

When the frontier molecular orbitals of a symmetrical molecule have a 
decisive role in the HF  iterative procedure, then Eq. (3) in the two-dimensional 
representation of equivalent orbitals can be used. Equivalent orbitals are defined 
as one-electron functions, which under symmetry operation i#(2#2 = i) transform 
as:  

Ix=> = T lx l>  (4) 

and vice versa (cf. Eq. (17) of Ref. [1]). The bond order matrix elements Pf~ 
given by Eqs. (Al l )  and (A 12) depend on the step of iterative procedure [n] 
through independent variables pz[n], ~z[-n] and integers s(2, n). Matrix elements 
of the HF operator Eqs. (A13) and (A14) now in the equivalent orbital basis 
enter Eq. (3)�9 The off-diagonal matrix element of the commutation Relation (3) is: 

[f~[nl ~[n]]l~ = 0 
o r  

p~ [n] e x p ( -  i@~[n]) ( - t) "ca'") +,(a,,- 1) {( _ 1),(X,,- 1)+,(a,,- 1) 

�9 A D x [ n  - 1] + (K12 - -  712) Da[n - 1]} - Da[n] { i f+  2 K a 2 p x [ n -  1] cos ~ 1 [ n -  1] 

+ (K12 - 7a2) e x p ( -  i~bz[n - 1])} = 0. (5) 

The diagonal element of the commutation Relation (3) is: 

[f~ [n], ~ [ n ] ] l ,  = 0 
or  

{ f f  + 2 K 1 2 P ~ [ n -  1] cos ~ [ n -  1]} sin @~[n] 
(6)  

- (K12 - 712) pz[n  - 1] sin(@z [n - t]  - ~ [ n ] )  = 0. 

If 2 = ~, fl, then # = fl, c~. In Eq. (5) the following symbols are used: 

maim]  = ]1/1 - 4 p# [m] (7) 
and 

A = 7 - 7 1 2 .  (8) 

Definitions of molecular integrals are given by Eqs. (A17)-(A20) taking into 
account that for a symmetrical molecule the following relations among the 
molecular integrals in the equivalent orbital basis hold: 711=722_--7 and 
(11/12) = (22/21) [-cf. Eqs. (A 17), (A 19), and (A20)]. 
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3. Commutator Relations Describing the Iterative SCF Procedure 
and its Stopping 

The stopping of the iterative procedure takes place when the invidual terms 
in Eqs. (5) and (6) are not any more step-dependent, i.e. 

pzEn] =p~En - 1], [cos ~z[n]! = Icos ~z[n- 1] 
and (9) 

s(c~, n) + s(/~, n) = s(~, n -  1) + s(/~, n -  1). 

The lengthy analysis shows that the stopping of the procedure requires 
OE OE 

Icos ~ l  = Icos ~ l  -= ]cos ~[ and p~ = p, - p. The energy extrema ~p~ ~ = 0 

fulfill the same conditions (cf. Section 4 of Ref. [13). Therefore, we consider the 
whole procedure itself with these limitations. 

When the stopping Condition (9) are introduced, the Eq. (6) for the diagonal 
commutator matrix element and the imaginary part of the offdiagonal commutator 
matrix element (5) are compatible only for particular parametrization, or if p = �89 
Therefore, we examine for the real Slater determinant only the real part of the 
offdiagonal matrix element of the commutator (5) which means that sin �9 = 0, 
i.e. cos �9 = + 1. On the other hand, for the complex Slater determinant only the 
diagonal commutator matrix element (6) with p = �89 must be analysed, because 
the case of particularly required parametrization is of no importance. 

Then the real part of Eq. (5) can be written in a simple form: 

C[n - 1] B[n - 1] ( -  1) s~'n)+s~'"- 1)= C[n] A[n  - 1], (10) 
where 

C[m] = D[m] /P[m]  , (11) 

P[m] =p[m]  cos ~P[m] =p[m]  z[m], z[m] = _ 1, (12) 

B[n - 1] = ( -  1) see'n- 1)+s(~,.- 1) A ~- K 1 2  - ])12, (13) 
and 

A [ n -  1] = 3K12 - ])12 ~- ~ ' / p [ n -  13 ~ [ n -  1]. (14) 

The real RHF and UHF approaches differ only in the assumption upon s(c~, n - 1) 
and s(p, n - 1). The RHF method requires that 

s(~, n -  1 ) :  s(fl, n -  1) (15) 

The UHF approach is basically free of constraints upon the one-electron density 
matrix, but for the UHF solution it holds (cf. Ref. [1]): 

s(~, n - 1) = s(/~, n - 1) + 1. (16) 

The iterative procedure is determined when A, B, and C Eqs. (11), (13), and (14) 
are not any more step-dependent. Then Eq. (10) is satisfied if C = 0 ,  i.e. p=�89 
which is the end of the allowed ~bond order" interval [of. for definition Eqs. (A 11) 
and (A 12)] or if 

B ( -  1) s(~'")+s(z'"- 1) = A . (17) 

The sum of integers s(2, n)+s(2, n - 1 )  connects two successive steps of the 
iterative procedure. The relative magnitude of ~atomic or group charges" in two 
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successive steps [ n - 1 ]  and In] is determined by these two integers s(2, n - 1 )  
and s(2, n) [compare Eq. (All)] .  

When the stopping of the iterative procedure is achieved, the Hartree-Fock 
solutions are obtained only for s(2, n) = s(2, n - 1), because only then the whole 
one-electron density matrix is not step dependent: 

preen] =preEn- 1] - P .  (18) 

If s(2, n) = s(2, n - 1) + 1 when the iterative procedure is terminated according to 
Eq. (9), the procedure ends in the oscillations of diagonal elements of the one- 
electron density matrix, although the "bond order" is step independent, and no 
convergence is achieved: if s(2, n)= s(2, n -  1)+ 1 and Pfj~[n- 1] > Pra[n- lJ, 
then Pf~En] < Pfj~[n] (j= 1, 2 ; ) '=  2, 1) Ecf. Eq. (A 11)]. 

This statement in the representation of equivalent orbitals does not exclude 
the possibility that in the LCAO representation of a polyatomic molecule the 
oscillation between nondiagonal elements of the bond order matrix can occur, 
as well. 

The iterative procedure for the complex Slater determinant can be studied 
using Eq. (6) with p = �89 in the form: 

cotg ~bEn] =A'En- lJ cotg ~b[n-  1] (19) 
where 

1 [3K12_Y12q - 2fl' ] (20) 
A'[n-- 1] - K 1 2 _ ~ l  2 c o s  ~ E n -  1 ]  " 

The conditions for stopping of the iterative process for the complex wavefunction 
are 

WEn - 13 =A'En] - A ' =  _ 1. (21) 

The above discussion of Eqs. (10) and (17) shows explicitly that the self con- 
sistency does not have to be achieved always, even when the individual terms of 
the commutator relations are step independent. This is a consequence of the 
nonequivalence of the commutator Relation (1) (defining the solution of the HF  
problem) and the commutator  relation (3) (describing the iterative procedure) 
in the limit n--* oo. 

4. Step by Step Investigation of the Iterative SCF Procedure 

It is always possible to assume that CEn] 4=0 [Eq. (11)] before ending the 
iterative procedure for the real Slater determinant. Therefore, Eq. (10) can be 
written in the form useful for the investigation of the iterative process: 

J En, n -  13 = G [ n -  1]. (22) 

The left- and right-hand side of Eq. (22) are: 

J[n, n -  1] - C[n - 1] ( _  1)s(<,)+sr 
CEn] 

Vx2[n-  1] - 4  "c[n] (23) 
l/xZEn] - 4  "tEn- 1] ( -  

1)s(&n)+sC~,n-1) 
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where 

and 

where 

and 
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G i n - l ] -  

x[m] = 1/p[m] 

A [ n -  1] 

B i n -  1] 
- a + b x [ n -  1], 

(24) 

(25) 

a = (3Ka2 - 712) / [ - (  - 1) s ( a ' n -  1)+s(fl,n- 1) A -}- K12 - 712] (26) 

b = fl'z[n - 11/[(-  1) s(='"- ,)+*(e,,- ,) A + Ka2 - ] ~ 1 2 ]  - (27) 

Equation (22) describes the iterative procedure for the real wavefunction without 
a priori symmetry assumptions in a very simple way because the right-hand side 
G [ n -  1] (Eq. 25) is a linear function in the inverse absolute value of the "'bond 
order" in the [ n - 1 1  st step ( p - * [ n - 1 ] = x [ n - 1 ] ) .  The values of integrals in 
Eqs. (26) and (27) and the assumption upon positive or negative "bond order" 
in [ n -  1] st step ( z [ n -  1] = + 1, Eq. (12)) determine slopes of these straight lines. 
The left-hand side of Eq. (22) J[n, n - 1] [Eq. (23)1 connects the values of the 
~bond orders" in two successive steps in such a way that the ending of the iterative 
procedure occurs if l a i n ,  n - 1]J = l. We assume throughout that A > 2K12 which 
describes reasonable localization for equivalent orbitals. 

The iterative procedure for the complex Slater determinant can be studied 
using Eq. (19) devided by cotg �9 [ n -  1] if cotg r [ n -  1] :~ 0. The detailed analysis 
of the iterative procedure with the help of graphical presentation will be given for 
the real Slater determinant. The analysis for the complex Slater determinant can 
be made along the same lines. 

4.1. The RHF Approach for the Real Slater Determinant 

The RHF constraint s(e, n )=  s(fl, n ) - s i n ]  [Eq. (15)] implies that constants 
a and b from the definition of the function G [ n -  1] [Eqs. (26) and (27)] are: 

a = (3K12 - 712)/(2-- 2712 +K12) (28) 
and 

b =/~'~ En - 12/(7 - 22a2 + K12). (29) 

a) If the following relation for the molecular integrals holds: 

? - 2712 + K12 < 0 (30) 

then a > l  [Eq. (28)1 and b ~ 0  [Eq. (29)1 according to f i ' z [ n - 1 ] X 0 .  The in- 
equality (30) is fulfilled when the Coulombic interaction between the equivalent 
orbitals of the frontier orbital model is relatively large. 

For illustration the representatives of the straight lines of G [ n -  1] are given 
in Fig. 1 a where x [ n -  1] > 2 is the interval of the allowed "'bond orders". In the 
figures of this section we take arbitrarily fl' < 0. 

b) If the inequality 
2-2712 + K 1 2 > 0  (31) 

holds, then b ~ 0 [Eq. (29)] according to fl' z In - 1] ~ 0 and the constant a [Eq. (28)] 
can lie in two different intervals: 
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ba) if 

then - 1 < a < 0 and 
bb) if 

7 -  371 z +4K12 > 0 ,  (32) 

? -  3712+4K12 < 0  (33) 

then a < - 1. The inequalities (31), especially (32) indicate weak Coulombic inter- 
action between the equivalent orbitals. The examples of G[n - 11 for the Cases ba) 
and bb) are given in Fig. 1 b. 

The points of interest are crossings Xl, x o, and x_ 1 of the straight line G [n - 1] 
with the horizontals l, 0, - 1 in Fig. 1 a and b. Whether these crossings exist or 
not depends on the Slope b [Eq. (29)] of Gin - 1], i.e. on the values of the molecular 
integrals. The iterative procedure is quantitatively described in Fig. 1, while 
the qualitative character of the procedure in various ~bond order" intervals, 
as well as the various possibilities of its stopping is shown in Fig. 2. 

The existence conditions for ~bond order" Pm with m = 1, 0, - 1 (Fig. 2) in the 
mentioned points of i n t e r e s t  Xl, Xo, x _  1 

GEn-11 (xm)=mare: 

1 

2 

1 

2 

1 

2 

- - - < P l = t [ n -  1]/x!=l/x i -  

---<Po=~En-q/Xo=l/x;- 

(Fig. 1) obtained from Eq. (25) for 

fl' 1 
< (34) 

A - 2 K 1 2  2 

fi' 1 
< 5- '  (35) 

~12-3K12 

fi' 1 
- - - < P - l = t [ n - 1 ] / X - x = l / x ; l =  3711_7_4K12 < ~ - .  (36) 

The existence Condition (34) is equivalent to the existence condition for the real 
RHF maximum (21) (Ref. [1]). 

As already mentioned, the function J[n, n - 1 1  [Eq. (23)1 describes two suc- 
cessive steps of the iterative procedure. It connects the absolute values of the 
"bond orders"' pin1 and p [ n -  11, their signs t [n l  and v [ n -  1] and the relative 
magnitudes of"atomic charges" [cf. Eq. (A 11)1 through integers s[n] and s in  - 11. 
The qualitative summary of the information obtained from function J [Eq. (23)1 
is given in Fig. 2. 

For the analysis of the function J it is advantageous to introduce the quantity 
aEn, n -  11 [cf. Eq. (23)1 

a[n, n -  1] - t [n]  ( -  1) st"l+sE"- 1] . (37) 
t [ n -  1] 

If a[n, n -  11 = 1 it follows that either both signs of the ~bond order" and relative 
magnitudes of ~atomic charges" do not change from In-1-1 st to [-n] th step, or 
both do change. If a[n, n - 11 = - 1 either the sign of the "bond order" changes 
from the [ n - 1 1  st t o  the In] th step: t [ n l = - t i n - 1 ] ,  and s [ n ] = s [ n - 1 ] ,  or 
oscillation of ~atomic charges" occurs: s[n] = s [ n -  1] + 1, but the "~bond order" 
does not change the sign through the steps: t [n ]  = t [ n - 1 ] .  We introduce the 
constraint z[n] = z[n - 1] in the graphs of Fig. 2 (as well as throughout Section 4) 
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G[n-I] 

2 -""~o 

(ol GEn-':W /"/'" 
Xle/~ x I ==......_ 

o -xo x.E~ 

(b) 

Fig. 1 a and b. Schematic plots of the function G[,_I] [Eq. (25)] for the real RHF problem. Points 
x o, x~, and x_ 1 are defined by Eqs. (34)-(36). (a) Inequality (30) is fulfilled. (b) Full lines - inequalities 

(31) and (32) fulfilled, broken lines - inequalities (31) and (33) fulfilled 

- I / 2  PI PO P-I 0 I /2  
%1 
( a l  

i ~ l ~  I 1 I 

-1 /2  P-I 0 1/2 
P[,.q 

(bl 

-1/2 PO Pl 0 E I 1/2 
Pin-I] 

(e) 

, , , ~ '~ 
-1/2 P-I Po F~I 1/2 

P[.-i] 
(d) 

Fig. 2a~-d. ~Bond order" intervals for the real RHF procedure. Po, P1, P -  1 are defined by Eqs. (34)-(36). 
The straight and wiggled lines assigned to the intervals with a[n, n - 1 ]  = 1 and a[n, n -  1] = -  1, 
respectively [Eq. (37)]. The arrows oriented to the right and to the left indicate intervals of Pt-- 1] for 
which Pt,J >P t , - I ]  and P[,] <Pt,-1],  respectively. (a) and (b) examples when inequality (30) holds 
(P1 < Po < P -  a < 0) with PI > - �89 and Po < - �89 respectively. (c) Example when inequalities (31) and 
(32) hold (Po < P1 < 0 < P_ 1) with Po > - �89 and P_ 1 < �89 (d) Example, when inequalities (31) and (33) 

hold (P_ 1 < Po < P~ < 0) with P_ ~ > - �89 
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in order to visualize easier the iterative procedure. This constraint means that 
there is no switching between positive and negative values of the ~bond order" 
in two successive steps of the iterative procedure. The maintained sign of the 
~bond order", i.e. the fixed irreducible representation throughout the iterative 
procedure is not the only possible criterium for choosing the occupied MO's. 
Their choice can be made according to the molecular orbital energy criterium 
as well, which will be discussed in Section 6. If the ~bond order" sign is fixed, then 
the straight lines in Fig. 2 denote no changes in relative magnitudes of ~atomic 
charges" in the l-n - 1-]st and the l-n-] th step and the wiggled lines indicate oscillations 
of the "atomic charges". The ~bond order" in the In] th step Pin]  does not neces- 
sarily have to lie in the same interval (P,,, P,) as the "bond order" in the I n -  t-]st 
step P i n - 1 ]  (where Pm and P,~ are defined by Eqs. (34)-(36)). Therefore, the 
iterative procedure does not in general have to end with the ~bond order" value 
pointed out by an arrow of the particular interval in which P i n -  1-] lies. The 
ending of the iterative procedure during which the ~jumping" between the "~bond 
order" intervals occurs, can be followed in details with the help of the graphical 
presentation of Eq. (22) similar to that of Fig. 1. 

According to this analysis three types of ending the iterative procedure by 
fulfilling Eq. (9) are possible: 

a) Approaching towards the ends of the ~bond order" interval ( -  1 1 ~-, 7). The 
values of the ~bond order" P = _+ �89 correspond to the HF solutions C = 0 of 
Eq. (10), which are symmetry adapted normal ~nonpathological" RHF solutions. 
Compare the HF energy extreme in Ref. [-1], listed under a) of Section 4. 

b) The stopping of the iterative procedure at the point P 1 -  
A - 2 K 1 2  

[Eq. (34)] is the solution of Eq. (17) for sin-] = s i n -  1-] and corresponds to the 
energy extremum described in Ref. [1] as the Case b) of Section 4 (cf. Eq. (20) with 
s[e] = sl-fl]). This HF extremum is the maximum of the energy expectation value 
according to the discussion in Section 6 of Ref. [1]. 

Even when in our oversimplified frontier orbital model the frontier orbital 
~bond order" P1 is negative, the overall ~bond orders" of a polyatomic molecule 
can be positive. Then, if the iterative procedure is directed by the frontier orbitals, 
the HF solution can be in reality a maximum without being noticed. 

c) Stopping at the point P_I = 3712_ 7 - 4 K ~ 2  [Eq. (36)] is the solution 

of Eq. (17) for sin] = s in  - 1-] + 1, and does not correspond to any extremum of the 
energy expectation value. The ending of the iterative procedure at P_ ~ is mani- 
fested in oscillations of the ~atomic charges", i.e. no convergence is achieved 
(cf. I-3] and [4]). 

4.2. The UHF Approach for  the Real Slater Determinant 

The iterative procedure for the UHF approach (s(~, n) = s(fl, n) + 1), [Eq. (16)] 
can be described by Eqs. (22)-(27) with 

712-3K12 
a - (38) 

7 - K 1 2  
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G[o_,] x~_ . 1  

o [n-,] 
- I  

Fig. 3. Schematic plots of the function Gin_ 11 for the real U H F  problem. Points Xo, xl, x_ 1 are defined 
by Eqs. (40-(42) 

-i)2 Po a, o P, ~/2 
PE~ 

Fig. 4. The "'bond order" intervals for the real U H F  procedure. P0, P1, P-  1 are defined by Eqs. (40)-(42). 
An example when P1 < �89 and P0 > - �89 is given. The further description is the same as in Fig. 2 

and 
b = - f l ' z [ n -  1] (39) 

y - K z 2  

In the UHF method, constant a [Eq. (38)] can lie only in the interval (0, 1). 
Therefore, the presentation of the iterative process by the straight lines G i n -  1] 
Eq. (25) is very simple as shown in Fig. 3. The qualitative description of the 
iterative process is presented in Fig. 4. The existence conditions for the ~'bond 
order" Pm in Fig. 4 with m = 1, 0, - 1 at the points x~, Xo, x_ 1 are: 

1 v [ n -  1] - f l '  1 
- 5 -  < / ' 1  = - -  - ( 4 0 )  

xl A + 2K12 < 2 ' 

1 ~ l - n -  1] /Y 1 
- ~ -  < Po = = (41) 

Xo 7 1 z - 3 K l z  < 2 '  

1 ~ E n -  1]  :' I 
- -~- < P - 1  - - - - .  (42) 

x-1 7 + 7 1 2 - 4 K 1 2  < 2 

The intervals with the straight lines indicate no changes in the relative magnitude 
of the spin charges from the [n - 13 st t o  the I n ]  th step of the procedure, and the 
wiggled lines suggest oscillations of spin charges in two successive steps. In the 
UHF method oscillations of spin charges do  not imply, of course, oscillations 
of overall "'atomic charges". 

The iterative procedure in the UHF approach assuming the stopping Condi- 
tions (9) can end with the following values of the "bond order" P [Eq. (12)]: 

a) Approaching the symmetry adapted RHF solution P = �89 if the existence 
condition for/ '1 [Eq. (40)] is not satisfied and if the sign of the "~bond order" is 
assumed to be positive. The existence condition for P_ 1 is probable to be satisfied 
for the usual values of the molecular integrals. In this case the iterative procedure 



General Properties of the Hartree-Fock Problem 173 

with fixed negative "bond order" can end at the symmetry adapted solution 
P -- - �89 only with hitting it directly. 

b) Stopping of the iterative procedure at the Point PI if the existence Condi- 
tion (40) holds. The Point P1 being always positive represents the UHF minimum 
which is given in the Ref. [11 by Eq. (20) with s(~) -- s(fi) + 1. 

c) Ending at the Point P_ 1(< 0) [if Eq. (42) holds] does not represent the 
solution of the UHF problem. The iterative procedure ends in oscillations of the 
spin charges from step to step with overall ~atomic charges" invariant. 

4.3. Concluding Remark 

The use of the extrapolation techniques forcing convergence of the SCF 
procedure for unstable molecules can lead to the HF solution lying in the energy 
surface region which is far away from the starting point and therefore not well 
understood. The safest way of avoiding convergence difficulties is to estimate the 
zero step of the iterative procedure sufficiently near to the meaningful HF 
solution. The difficulty is that the safe convergence region can be very small. 
In the simplest symmetrical frontier orbital model the convergence region is a 
single Point P--�89 or -�89 The symmetry constraints can be considered as a 
special case of the zero step estimate for the MO's applicable, of course, only for 
symmetrical molecules. 

5. The Real Restricted Iterative Procedure for the Slightly Asymmetrical Molecule 

It is easy to show that the main features of the iterative procedure analysis 
carried out on the frontier orbital model for a symmetrical molecule remain mutatis 
mutandis unchanged for a slightly asymmetrical molecule. The small asymmetry 
can be caused by deviation from the equilibrium geometry or by the asymmetrical 
substitution in the periphery of the molecule with the symmetrical functional 
group. As already discussed in the case of a symmetrical molecule, the symmetry 
constraints assumed in the 0 th step of the iterative procedure can eliminate some 
strange characteristics of the HF approach as ending in the HF maximum or 
ending in oscillations of the ~atomic charges". When symmetry constraints are 
not applicable, like in the case of a slightly asymmetrical molecule, the described 
strange features cannot be avoided by symmetry constraints. 

For the description of the slightly asymmetrical molecule we use the frontier 
orbital model where frontier orbitals are linear combinations of two approximately 
localized vectors. These vectors are assumed to deviate only slightly from the 
equivalent orbitals of the corresponding symmetrical molecule [cf. Eq. (4)]. For a 
diatomic molecule in a minimal basis set these localized functions would be 
simply atomic orbitals. 

In the frontier orbital model of a polyatomic molecule the slight asymmetry is 
introduced through the assumption upon molecular integrals: h l l - h 2 2 ~ O  
[Eq. (A 15)], 711 - 722 ~ 0 [Eq. (A 17)] and Z ~ 0 [Eq. (A20)], where the deviations 
from zero are small quantities. We use the matrix element of the commutator 
IF[n], P in]]  =0  for the investigation of the stopping of the real RHF 
(Pr~[n] = er~[n] ~ e[n] and F~[n] = F'[n] -F [n ] )  iterative procedure. Sub- 
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stitution of Eqs. (A 11)-(A 14) and (12) in this matrix element gives rise to: 

{1 - x'oP[n - 1]} D'[n] = Pin]  D'[n - 1] (X'o - x'_ 1) + A 'P[n]  

Z'  
+ ~ -  {4Pin] P [ n -  1] - D ' [ n ]  D ' [ n -  1]} 

(43) 

and 

U (P, s[2n] + s[2n - 1]) D O - ex'oDo + W(P,  s[2n] + s[2n - 1], e, 6) 
(50) 

= ( _  1)~r2,- 11 V(P, s[2n] + s['2n - t3, 

respectively, where 

U(fi, s[2n] + s [ Z n -  1]) = 1 - P[x~ - ( -  1) ~t2"l+~t2"- 11 (x'_ 1 - x~)], (51) 

4~P (1 - x'oP) W(P, s[2n] + s[2n - 1], 6, e) = - 6x'oDo - ~ (52) 

+ ( x ' - l  + X'o)(-1)~t2"l+st2"- l ' {eDo-  46p2} 
Do ' 

Z' 
V(P,s[2n]  + s [ 2 n -  13) = A ' P +  -~- [ 4 p 2 -  ( - 1)s[2n]+~[Zn-ll(1 -- 4P/) ] ,  (53) 

and 
Do = (1 - 4ff2) & . (54) 

where 

A ' =  [-hll  - h22 + 1(~211 - ~)22)]/fl' (44) 
and 

z ' =  z/f l ' .  (45) 

The molecular integrals are defined in the Appendix 2 [Eqs. (A15)-(A20)]. 
The quantities x~ with m = 1, 0, - 1 are given by Eqs. (34)-(36) and 

D'[m] = ( -  t) St"1 (1 - 4p2[m]) ~ = ( -  1) sire1 Dim] (46) 

(compare also Eq. (7)). 
Let us assume that, in general, for the asymmetrical molecule the iterative 

process can end not only with oscillations of ~atomic charges", but also with 
oscillations of the ~'bond orders". The possibility of ending of the iterative pro- 
cedure in the oscillation of the "~bond orders" (i.e. off-diagonal elements of the 
one-electron density matrix) for a symmetrical molecule can also be shown by 
relatively lengthy analysis. 

We make the assumption that for big enough I-n] the following expressions 
hold: 

P [ Z n -  1] =P+6, (47) 

P [2n] = P + e, (48) 

where 6 and e are small quantities. Therefore, Eq. (43) in the [2n - 1] st and in the 
[2n] th step can be written: 

U(P, s[2n] + s[2n - 1]) D O - 6X'o Do+ W(P,  s[2n] + s[2n - 1], 6, ~) 
(49) 

= ( - -  1) st2nl V(P, s[Zn] + s[Zn - 1]) 
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The only difference between the left hand sides of Eqs. (49) and (50) consists in 
exchanging the role of the "bond order" deviations 5 and e in the function W. 
In the zero-approximation with respect to Z', A', e, and 5 (i.e. for a corresponding 
symmetrical molecule) the value of P is determined either by Do = 0 [cf. Eq. (54)1 
describing the symmetry adapted solutions or by U(P, s [2n]  + s [ 2 n - 1 ] ) = 0  
[cf. Eq. (51)] giving the other possibilities of ending the iterative procedure: the 
ending in the RHF maximum (P = P1 for s[2n] = s[2n - 11) or in the oscillations 
of the "atomic charges" (P = P_ 1 for s[2n] = s[2n - 1] + 1). 

From the comparison of Eqs. (49) and (50) follows, if s[2n] = s [ 2 n -  I] and 
therefore P = P1, that ~ = 6. Then, the iterative procedure ends with the ~bond 
orders" giving the HF maxima for the slightly asymmetrical molecule (see the 
remark [9]): 

Pmax(S) : P[2n]  = P[Zn  - 11 = P1 [1 - ( -  1) ~ V(Px, 0)/D0], (55) 

where 

Z t 
V(P1, O) = A'P1 - ~ - ( 1  - 8PZ). (56) 

The "bond order" Pmax can yield two according to the choice of the even or odd 
value of now step independent integer s. The even or odd value of the integer s 
describes two possible choices of "'atomic or group charges" [cf. Eq. (A11)]. 
In the asymmetrical case two atoms or atomic groups are distinguishable and, 
therefore, Pmax(1) and Pmax(2) (Pm~x(1)+ Pmax(2)= 2P1) can appear giving different 
energy values. 

If s[-2n] = s [ 2 n - 1 ]  + 1 and therefore P = P - i ,  from the comparison of 
Eqs. (49) and (50) follows that e = - 6. The iterative procedure ends with oscilla- 
tions between P[2n]  and P [ 2 n -  1] 1 : 

P [2n l  = P_ ~ + ( -  1) sE2"l V(P_ 1, 1) D o l l ( P 1 )  - 1  - -  4P_1],  (57) 
and 

P[Zn  - 1] = 2P_ 1 - P [Zn] ,  (58) 
where 

V(P_ 1, 1) = A ' P _ I  + Z ' / 2 .  (59) 

Oscillations between P[2n]  and P [ 2 n -  l] occur according to Eq. (58) around the 
Point P_ 1. This point describes for a symmetrical molecule the ending of the 
iterative procedure with oscillations of ~atomic charges" [cf. Eq. (36)]. In the 
asymmetrical case oscillations of ~atomic charges" and of the "~bond orders" 
in two successive steps are connected. The energy expectation value in even and 
odd steps of the iterative procedure are, of course, different. 

6. Selection of MO's in the Slater Determinant According to their Energies 

In the preceding Sections the sign of the frontier orbital ~bond order" has been 
taken as fixed throughout the iterative procedure. This recipe is useful for in- 
vestigation of SCF procedures when the study of the region of molecular orbital 

1 In the derivation of Eqs. (55) and (57) it is assumed that the second term is a small quantity. 
This is, of course, the condition for ending the expansion in ~ and 6 after first order in Eqs. (49) and (50). 
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crossing is of interest. The Slater determinants, in the frontier orbital model 
giving rise to the positive or negative frontier orbital ~'bond order" simulate the 
Slater determinants with the highest occupied MO's belonging to the irreducible 
representation a and b, respectively of the two-dimensional symmetry group 
(I, T) [cf. Eq. (4)]. The selection of molecular orbitals according to the irreducible 
representations is the usual recipe for the iterative SCF procedure when the region 
of the molecular orbital crossing is investigated. 

On the other hand the generally used SCF techniques choose the MO's 
entering the Slater determinant according to the order of increasing MO energies. 
For analysing the iterative procedure with the MO energy criterium, it is ad- 
advantageous to consider the secular equations in the [,n] th step corresponding 
to the two-dimensional HF problem. Then the MO energies for the real RHF 
approach (FT'[n] = PT~[n] =--PEn])obtained explicitly from the secular deter- 
minant are: 

81,2[-n] = (F11 In] + F12['n])/2+IF12[[ lr -~ (F22['nl-4[F12F11[n])2[n]! '13 

and the following relation for the ;~bond order" corresponding to al[nl and 
a2 In] according to the upper and lower sign holds: 

P[,nl/P11 [n] = a~[n] -T- Sign(F12 In]) (1 + ~02 In]) -~ , (61) 
where 

PEn] - P12 [n], 
and 

a~ In] = (F22 [n] - Fll [n])/2 F12 [n]. (62) 

From Eq. (61) it is evident that 

Sign(P[n]) = -T- Sign(F12[n]) = -T- Sign {13' - (712 - 3K12) TEn - 11 pen- 11} 
(63) 

( P[n 1] 
= -T- Sign(/?') Sign/1 ,o } k 

where Po is defined by Eq. (35). Weassume again arbitrarily that fl' <0. Then 
Po is always negative. 

For the lower MO energy e 1 [nl [-upper sign in Eq. (64)] from Eqs. (61) and (63) 
follows that if P[n- 11 >0  then the ~bond order" in the following step of the 
iterative procedure is also positive: P[nl > 0. If the ~.bond order" in the [ n -  11 st 
step is negative the ~bond order" in the [n] th step can be negative or positive: if 
P [ n - 1 ] < 0  and if - � 8 9  then P [n ]<0 ,  but if - � 8 9  
< PEn-  1] < 0 then PEn] > 0. In order to illustrate the behaviour of the iterative 
procedure with the MO energy selection criterium we can use Fig. 2 allowing 
now, of course, the change of the ~bond order" sign during the process. 

If the inequality (30) for the molecular integrals is satisfied (Fig. 2a and b) 
then according to the analysis of this section the iterative procedure ends in the 
symmetry adapted solution with P = �89 if Po < P[0] < 0 and of course for any 
P[0] >0. The iterative procedure will end with the symmetry adapted solution 
P = - �89  if PI [Eq. (34)1 exists and P[0] < P1 < No. If the existence Condition (35) 
for Po is fulfilled (2[13'1 <(Y~2- 3K12)) the occupied molecular orbital with the 
negative ~bond order" exhibits lower MO energy eb than the corresponding virtual 
orbital belonging to the irreducible representation a(e~-eb =2f i '+  7a2-  3K12). 



General Properties of the Hartree-Fock Problem 177 

For the weak spin coupling when the inequalities (31) and (32) hold and the 
existence condition for P-1 [Eq. (36)] is satisfied, then the iterative procedure 
starting from any positive or negative "bond order" in the [0] th step P[0]  always 
ends in the oscillations of the "atomic charges" without convergence (cf. Fig. 2c), 
(if, of course, the symmetry adapted solution is not hitted in the [0] th step). If the 
Point P_ 1 does not exist, the only possible ending of the iterative procedure is the 
symmetry adapted H F  solution with P=�89 If the inequalities (31) and (33) are 
fulfilled (cf. Fig. 2d), then the symmetry adapted HF solution with P = � 8 9  is 
obtained, when P_ 1 < P[0]  < 0 and of course for any P[0]  > 0. If the Point P_ 
exists and P[0]  < P_ 1 < 0, then the iterative procedure ends with the symmetry 
adapted solution with P = -�89 

For the higher MO energy ez In] [lower sign in Eq. (60)] the following con- 
clusions concerning the "bond orders" in two successive steps can be drawn: 

I f P  0 < Pin- 1], then P[n] <0.  
If -�89 1] <Po,  then P[n] >0. 

We consider again examples for the higher M O  energy ~2 [n] on Fig. 2 (real RHF  
approach) allowing the change of the ~ order" sign. In case that Point Po 
[Eq. (35)] does not lie in the allowed "bond order" interval, then the iterative 
procedure must end in the following way: Either in oscillations with the "bond 
order" P_ 1 < 0, when the inequality (30) holds (Fig. 2b) or in the HF  maximum 
with the "bond order" P~ < 0 if the inequality (31) holds (cf. Fig. 2c and d) inde- 
pendently of whether the starting "'bond order" P[0]  is positive or negative. 
If the point - � 8 9  < 0  exists and P[n] e(-�89 Po), it is not excluded that the 
iterative process will continue switching between the positive and negative 
frontier "bond orders" values from step to step. As it can be noticed from this 
discussion, if the SCF solution with frontier molecular orbital in the Slater 
determinant having higher MO energy ~2[n] [Eq. (60)] is looked for, the SCF 
iterative procedure exhibits especially strange features. 

The above analysis shows that in the molecular orbital crossing region, when 
the iterative procedure uses the energy criterium for the selection of the occupied 
MO's, the convergence difficulties are even more likely to occur. 

Conclusion 

1. The existence condition for nonconvergence [Eq. (36), when inequalities 
(31) and (32) hold] in the terms of the correlation parameters t/ and ~c can be 
formulated as: 

t I > �89 - ~c)+ �89  ~). (64) 

The quantities rI=(2(DAIIFIIDB))/AE(A~B ) and ~c= 1-2TE/AE(A~B) (cf. 
Eqs. (39)-(41) of Ref. [1]) measure the interaction between the configurations 
DA and D B and the relative position of the lowest singlet and triplet, respectively. 
The symbol F is defined as: 

F - -  7 1 2  - -  4712 (65) 
Ifl'l AE(A--,B) 
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A E(A  ~ B ) i s  the energy difference between the doubly excited configuration DB 
and the ground state configuration D A. The Slater determinants D A and D B are 
built by the symmetry adapted frontier molecular orbitals b~onging to the 
irreducible representations a and b of the symmetry group (1, T) (cf. Eqs. (24) 
and (25) and the Discussion of Ref. [ 1]). 3-E is the average value between the singlet 
and triplet excitation energies. . The Condition (64) for nonconvergence in the 
interval of the positive "bond orders" differs from the condition of occurrence of 
the U H F  minimum (t/> 1(1 - to) [Eq. (43) of the Ref. [1]) only in the term � 8 9  to), 
which is practially determined by the values of the Coulombic integral 712 
measured, of course, in the units of A E ( A ~ B ) .  At the molecular orbital energy 
crossing i.e. for [ff[=0, the existence condition for the RHF maximum 
( (7 -  712 + 2K12) > 0) and for the triplet instability ( (7 -  7 1 2  - -  2K12) > 0) are 
always satisfied. The condition for the nonconvergence at the crossing point is 
7 -3712  +4K12 > 0  which requires very weak Coulombic interaction between 
the equivalent orbitals [i.e. inequality (32) is fulfilled]. The nonconvergence of the 
customary iterative procedure can be added to the strange HF solutions as 
another symptom of the diradical character when the Coulombic interaction 
between the nonpaired electrons is weak. 

2. The investigation of the unstable molecular configurations with the SCF 
method should be carried out with extreme care, especially when the electronic 
configurations with higher energies are considered. It is explicitly shown that the 
iterative procedure can end in the HF maximum without being noticed or in the 
oscillations of the '~atomic charges" and/or '~bond orders" depending on the zero 
step assumptions and on the way of selection of the MO's into the Slater deter- 
minant throughout  the procedure. 

3. It has been explicitly shown on the example of the slightly asymmetrical 
molecule that the introduction of the asymmetry does not change the strange 
features of the HF problem. Evidently, these HF properties can be met even more 
frequently for the slightly asymmetrical molecules where the symmetry con- 
straints cannot be applied. 

A p p e n d i x  

I. Projector on the Space Spanned by Eigenvectors of a One-Electron Operator 

From eigenequation for any one-electron operator B follows: 

B~) = e ~ ) ,  (A 1) 

[/},/~u)] = 0, (A2) 
where/~u) is a projector operator 

/~o~ = l]) (JI. (A3) 

Equations (A 2) holds for any linear combination of/~u) i.e. 

/~U~m~ =/~(~), (A4) 
jEg  

where g is any subspace of the space spanned by the complete set of eigenvector tJ) of Eq. (A 1). If 
m~ = rnj for allj 6 g, then/~(~) is a projector, as well. 

In the representation of orthonormal basis 10) 

[l') = ~ I0) (glJ) = Z CyolO) (A5) 
o o 
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commutator given by Eq. (A 2) takes form 

[B,/~r = 0, (A 6) 
where 

/~* = R*, (A 7) 
and 

P~, = Z m.i" C*oCJ," (AS) 
jeg 

/~ is the transposed matrix to P. 

2. Commutator of the HF Matrix and One-Electron Density Matrix 

In the RHF approach the a- and fl-singly occupied Fermi seas ~ and ~ a  are empty (/~ =/~a = 0 
compare Eqs. (A3) and (A4) of Ref. [1]) and in the UHF approach doubly occupied Fermi sea ~ c  is 
empty (/~c = 0 compare Eq. (A 3) of Ref. [ 11). One-electron functions in the Slater determinant (Eq. (A 1) 
Of Ref. [1]) for which energy expectation value E (Eq. (A6) of Ref. [1]) exhibits extremum are in both 
RHF and UHF methods eigenfunctions of the operator/~z, 2 = a, fi (Eq. (A 12) of Ref. [1]). As operator 
~z can be in both approaches considered as a function of P ~  = (#[/~c+/~alv) (Eq. (A9) of Ref. [11), 
commutator given by Eq. (A6) takes form: 

[Fz(pr~, prp),/~1 = 0. (A9) 

Space # can be in general spanned by any manifold of vectors which are eigenvectors of the HF 
operator P;. We can take # = ~ c  @ ~ ,  i.e. for RHF: g - - - ~ c  and for U H F : g - =  ~ .  In this case 

p~= p rz .  (A 10) 

As pr~ is a representation of a projector, which is idempotent by definition, the one electron density 
matrix in the two-dimensional orthonormal basis can be written as: 

T , ~ _ _  1 - -  Pjj - ~ ( l + ( - 1 ) s ( ~ ) + J  1 - ~ ) ,  j = l , 2 ,  (Al l )  
and 

p~r~ = p~ e x p ( i ~ ) ,  (A 12) 

where s(2) is an integer (compare Eqs. (6) and (7) of Ref. [1]). In these considerations the connection 
between the restricted and unrestricted version of the HF method is emphasized. It is therefore, 
advantageous to use the quantity P~2 = pT~ = p(~ as the definition of the "~bond order" for RHF, 
as well. The customary definition of the "bond order" is: 2P~2 =pv~ + par2~. Matrix elements of the 
Hartree-Fock operator F ~" (compare Eq. (A 12) of Ref. [ 1 ]) in the representation of the two-dimensional 
orthonormal basis [g) are: 

F~, = hz, + 1(2,~ + 2712 - K, 2 ) -  [(7~, - ~a 2)/21 ( - 1)~(~) + ~ V 1 - 4p~ 

+ [(712 - Kaz)/2] ( -  1) ~(~)+~ ~ + 2(##1#~ Px cos (bX, 2 = c~, fl; # = 1, 2, (A 13) 

F ~ z = f f - ( 7 1 z - K l z ) p ; ~ e x p ( - i , I ) a ) + 2 K l : p ~ c o s q ) - ~ + � 8 9  (A14) 

If2 = a then 2 =  fl and vice versa. If# = 1 then g =  2 and vice versa. The molecular integral in Eqs. (A 13) 
and (A 14) are defined as: 

h,, = (#, 11 h(1)Iv, 1), (115) 

(#v 10~)= (#, I I (e, 210(1, 2)Iv, 1)[a, 2 ) ,  (A 16) 

Y,~ = (##1 vv),. (A 17) 

K~2 = (12[12) ,  (A18) 

fl' = h~2 + �89 + (22121)1, (A 19) 

Z = (11112) - (22121). (A 20) 

Operator h(1) and 0(1, 2) are one- and two-electron operators of the effective Hamiltonian (Eq. (10) 
of Ref. [1]). 
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